\qquad Hour \qquad

The Horsepower Lab and Problems

The Horsepower Mini Lab
The world's strongest man can work at a horsepower of \qquad 5.84 hp (for a few seconds)_

Working in groups of 2 or 3 , choose any 3 activities from the following list:

lift a weight	jump rope
Running up/down flight of stairs	step aerobics (up and down 1 stair)
sit-ups	push-ups (on your knees or regular ones)
climb stairs	jumping jacks

Data: \quad ***YOU MUST SHOW YOUR WORK IN THE BOXES OR YOU WILL LOSE POINTS!***
Do each activity for one minute. Record the force, the distance and the time required below. After you finish with the activities, complete the calculations and answer the questions.

Activity-	\#1- __ lift 5 lb weight	\#2- __jump rope
Time (total) (sec)	60 sec	60 sec
Distance (total) (Use total distance covered)	72 m	45 m
Force (total) $\mathrm{F}=\mathrm{mxa}$	Use mass of weight in kg , $\mathrm{a}=-9.8$	Use your mass in kg, $\mathrm{a}=-9.8$

Now calculate the work and the power needed for each of the above activities. Show your work!

Work W = F x d		
Power P = W/ $\Delta \mathrm{t}$		
OrP F x d / $\Delta \mathrm{t}$		
Your horsepower:		

James Watt came up with a calculation of horsepower by watching a horse pull a grinder around a circle. He found it to be $33,000 \mathrm{lb} \mathbf{x ~ f t}$. Change this to our units of watts ($\mathbf{N} \mathbf{x ~ m}$) using dimensional analysis. ($1 \mathbf{N}=$ 0.225 lb) min sec

