Name			Hour	_
The Horsepower Lab and Problems				
The Horsepower Mi The world's strongest	ni Lab man can work at a horsepowe	r of5.5	84 hp (for a few seconds)_	
Working in groups of 2 or 3, choose any <u>3 activiti</u> lift a weight Running up/down flight of stairs sit-ups climb stairs		ies from the following list: jump rope step aerobics (up and down 1 stair) push-ups (on your knees or regular ones) jumping jacks		
<u>Data</u> : ***YOU MUST SHOW YOUR WORK IN THE BOXES OR YOU WILL LOSE POINTS!*** <u>Do each activity for one minute.</u> Record the force, the distance and the time required below. After you finish with the activities, complete the calculations and answer the questions.				
Activity-	#1lift 5 lb weight		#2jump rope	
Time (total) (sec)	60 sec		60 sec	
Distance (total) (Use total distance covered)	72 m		45 m	
Force (total) F= m x a	Use mass of weight in kg, a	=-9.8	Use your mass in kg, a=-9.8	
Now calculate the work and the power needed for each of the above activities. Show your work!				
Work $W = F \times d$				
$\begin{array}{c} \textbf{Power} \\ P = W/\Delta t \\ Or \end{array}$				
$P = F \times d / \Delta t$				

James Watt came up with a calculation of horsepower by watching a horse pull a grinder around a circle. He found it to be 33,000 $\frac{lb \ x \ ft}{min}$. Change this to our units of watts $(\frac{N \ x \ m}{sec})$ using dimensional analysis. (1 N = 0.225 lb)

Your horsepower: